• 3

動動腦~~找硬幣

Toluba wrote:
他們的方法是錯的我的...(恕刪)


如果已知輕或重.....你的方法就可行......

但是不知道輕重就無法按照你的方式來進行了

因為你的6/6.....一定不平衡......所以不知道要取哪一堆分3/3......要取輕的呢?還是取重的?

這無法分辨阿.....
Toluba wrote:
這題很難用文字解說我...(恕刪)

恩, 看懂了. 謝謝.
看起來好像都不只秤三次!

到底要如何能夠秤三次就找出唯一的一個不知輕或重的硬幣呢? 傷腦筋~~

似乎要用"添加"與"拿取"的方式才能找到..我再想想~~
Toluba wrote:
這題很難用文字解說我...(恕刪)


先分成3堆(甲乙丙)

甲/乙---->平衡

則丙為異常1.2.3.4

剩下兩次~如何得知1.2.3.4哪個異常呢?

目前想到都是4次.....


先睡....明天繼續奮鬥....
左手拿挪威的森林 wrote:
先分成3堆(甲乙丙)...(恕刪)

丙取 123, 然後從甲或乙任取三玫, 如果平衡, 那就是 4, 如果不平衡, 你也知道異常的是輕還是重, 剩三枚, 再一次就找出來了.
恩恩 了解我的錯誤了
我再想三想~~~~~~
看來好像要先找到標準值才行呢
這個是假設在平衡上,如果不平衡呢?又如何得知哪個是正確重量
左手拿挪威的森林 wrote:
先分成3堆(甲乙丙)...(恕刪)

從丙堆裡面取三個
再從其他兩堆隨意取3個正常的來秤
1.如果平衡,就把丙堆剩下來那一個拿來跟正常的一起秤
2.如果不平衡,就知道到底是輕或重,
如果比正常的重,那再從三個裡面取兩個來秤,平衡的話,剩下那個是重的,不平衡就看哪個重
如果比正常的輕,方法一樣
KEM086 wrote:
這個是假設在平衡上,...(恕刪)

請看我的解法 謝謝
Toluba wrote:
這題很難用文字解說我...(恕刪)


如T兄所說, 將12枚硬幣先分成三堆:分別為[a1, a2, a3, a4]; [b1, b2, b3, b4]; 以及[c1, c2, c3, c4]

先秤甲堆(a1, a2, a3, a4)乙堆(b1, b2, b3, b4).....(秤第一次)


( 1 ) 假設甲堆與乙堆平衡...則代表[c1, c2, c3, c4]中有問題!
秤第二次時, 甲堆中保留2枚(如a1與a2), 乙堆則換上c1與c2:
( A ) 若第二次平衡, 則表示[c3, c4]中有一枚異常:
( i ) 再將甲堆拿掉一枚, 乙堆則換上c3.....(秤第三次)
( ii ) 秤第三次若為平衡, 則表示c4異常; 反之則是c3有問題!
( B ) 若第二次不平衡(若乙堆較重則表示異常之硬幣為較重, 反之則為較輕), 表示[c1, c2]中有一枚異常; 則以c1與c2秤第三次即可得知哪一枚硬幣異常!


( 2 )假設甲堆與乙堆不平衡:
秤第二次時, 將甲堆換成[a1, c1, c2, c3], 而乙堆則換成[b1, a2, a3, a4]:
( A ) 若第二次平衡, 則異常之硬幣在[b2, b3, b4]中;且由於[a1, a2, a3, a4]為正常, 故可從第一次得知異常之硬幣為較重或較輕! (此處假設秤第一次為甲堆較重, 故異常之硬幣為較輕!)
( i ) 將b2與b3秤第三次, 若平衡則異常之硬幣為b4!
( ii ) 秤第三次若不平衡即表示[b2, b3]中較輕的硬幣異常!
( B ) 若第二次不平衡, 異常之硬幣則在[a1, b1]之中或者是在[a2, a3, a4]之中 (同樣假設秤第一次為甲堆較重):
( i ) 若秤第二次仍為甲堆較重, 即表示異常之硬幣在[a1, b1]之中(a1太重或是b1太輕), 故以a1與c1來秤第三次:
1. 若平衡, 則b1太輕,
2. 若不平衡, 則是a1太重!
( ii ) 若秤第二次為乙堆較重, 則異常之硬幣在[a2, a3, a4]之中, 且為較重; 故以a2與a3秤第三次:
1. 若平衡, 則異常之硬幣為a4!
2. 若不平衡, 則較重之硬幣為異常!
  • 3
內文搜尋
X
評分
評分
複製連結
Mobile01提醒您
您目前瀏覽的是行動版網頁
是否切換到電腦版網頁呢?