(求解) 國一下 比例 數學題. 謝謝

假設 (a/b) = (b/c) = (c/a)
則 (5a+2b-c) / (3a+7b-2c) = ?

記得30年前做過類似題目, 但現在忘了.
2017-02-09 7:41 發佈
文章關鍵字 比例 數學題
unl7911 wrote:
假設 (a/b) ...(恕刪)


設 a=b=c=1

(5+2-1)/(3+7-2) = 6/8 = 3/4



[證明 a=b=c=1]

a:b = b:c = c:a = r
a=rb , b=rc , c=ra

a = rb
 = r^2 * c
 = r^3 * a

∴ r=1
∴ a=b=c=1

jimmypp wrote:
設 a=b=c=1...(恕刪)


了解, thank you so much.
(a/b) = (b/c) = (c/a) => a=b=c,
(5a+2b-c) / (3a+7b-2c) = (5+2-1)a/(3+7-2)a = 3/4.

至於(a/b) = (b/c) = (c/a) => a=b=c
則是類似2樓的算法, (a/b) = (b/c) = (c/a) = r,
a=br, b=cr, c=ar
a=axr^3
r^3=1
r=1
=> a=b=c
(這僅能證明 a=b=c, 不能證明a=b=c=1, 因為也可以a=b=c=2, =3, =4, =.....)

舊傻男人 wrote:
(a/b) = (b...(恕刪)


Yes, I agree that, thanks a lot.
國一只考慮實數,則可:

∵ a+b+c≠0,a/b = b/c = c/a = (a+b+c)/(a+b+c) = 1

⇒a=b=c

⇒(5a+2b-c)/(3a+7b-2c) = 6/8 = 3/4


若是高中包含虛數的題目,則本題有三個解。
內文搜尋
X
評分
評分
複製連結
Mobile01提醒您
您目前瀏覽的是行動版網頁
是否切換到電腦版網頁呢?