unl7911 wrote:假設 (a/b) ...(恕刪) 設 a=b=c=1(5+2-1)/(3+7-2) = 6/8 = 3/4[證明 a=b=c=1]a:b = b:c = c:a = ra=rb , b=rc , c=raa = rb = r^2 * c = r^3 * a∴ r=1∴ a=b=c=1
(a/b) = (b/c) = (c/a) => a=b=c,(5a+2b-c) / (3a+7b-2c) = (5+2-1)a/(3+7-2)a = 3/4.至於(a/b) = (b/c) = (c/a) => a=b=c則是類似2樓的算法, (a/b) = (b/c) = (c/a) = r,a=br, b=cr, c=ara=axr^3r^3=1r=1=> a=b=c(這僅能證明 a=b=c, 不能證明a=b=c=1, 因為也可以a=b=c=2, =3, =4, =.....)
國一只考慮實數,則可:∵ a+b+c≠0,a/b = b/c = c/a = (a+b+c)/(a+b+c) = 1⇒a=b=c⇒(5a+2b-c)/(3a+7b-2c) = 6/8 = 3/4若是高中包含虛數的題目,則本題有三個解。