• 20

吳永志到底是啥博士?

剛看到某周刊封面預告,
這位"博士"被他兒子踢爆了?
看看今天會不會有相關新聞
砍美眉,救小白,快找腋魔俠Online~
新聞出來了
被兒子踢爆都是假的
而且他還是越南人,連國籍都造假
新聞
我想說....

1.作息習慣、早睡早起
2.飲食避開 煎、炸、炒、烤
3.不抽菸、不飲酒
4.用餐定時定量
5.每天有三次排泄
6.適量運動

上面這些應該是基本常識
不用XX博士來說 大家應該都知道吧
只是自己做不做的到而已

還是說買了本書 就有如增加十年功力
就可以簡單克服 自己的懶惰和慾望呢?

如果是...我也想要買一本了 haha
樹大必有枯枝,人多必有白癡

nicle wrote:
新聞出來了
被兒子踢...(恕刪)


窩裡反
上次說要告媒體
這次連上次的一起告好了
我看恐怕還是心虛不敢

我只想知道
當初城邦何社長說要幫忙捐出來的版稅
捐了多少啊
是不是可以秀個捐款收據給大家看啊

關於吳永志說的(下文節錄自壹周刊):而提及的果汁機和營養品,有機商店都有賣,不知去哪買的可透過他的中心介紹供應商,保健中心的果汁機是要送牧師或捐贈。

我媽問:可不可以送他們慈濟學會十台?
一場家庭倫理親情大悲劇

爸爸答應給兒子版稅, 兒子嫌少不爽拿, 老爸一氣之下一毛不給, 兒子抓狂以攻擊老爸為職志.

找到週刊所寫的部落格 http://wallee1.pixnet.net/blog , 果然沖著吳永志來的,

可是吳經國從小在美國長大耶, 中文程度有這麼好喔?? 吳經國說他太太是學文學的...我想是吧!!引人想像啊~哈

"爸爸答應了沒兌現" , 要是我講這句話, 不被我老頭打爆才怪. 原來就是要老子給錢喔, 養兒子念博士幹麻啦~

快點告你老爸吧~說到要做到, 不要讓人看衰, 我想知道誰說的是真的.


耳邊隱約聽到音樂響起~

張震嶽 - 我要錢
作詞:張震嶽 / 作曲:張震嶽

就是因為認識了一個新的女生
所以我買了一頂新的帽子
她說她禮拜三願意跟我出去逛逛街
可惜口袋裡剩下兩張五十元
喔 媽媽 我要錢 喔 爸爸 我要錢
喔 媽媽 我要錢 喔 爸爸 我需要你的錢

為了那個女生我想了很多方法
說說笑話吃吃水果看電影
你也知道交朋友常常需要金錢幫忙
可能還需要買一套洋裝給她
喔 媽媽 我要錢 喔 爸爸 我要錢
喔 媽媽 我要錢 喔 爸爸 我需要你的錢

我承認有時候常偷開車子出去玩
但至少沒有發生什麼意外
也承認在外面偷抽煙但我已經戒掉
希望可以再多給幾張啊
喔 媽媽 我要錢 喔 爸爸 我要錢
喔 媽媽 我要錢 喔 爸爸 我需要你的錢
媽媽 我要錢 爸爸 我要錢
媽媽 我要錢 爸爸 我需要你的錢


仔細看了這個叫吳經國的網站
裡面有一張他自己公佈的"授權書" 照片

吳永志授權
將該書的"簽約""發行""編核""排版"等事宜
委託給吳經國.

如果真如吳經國自己說的從小痛恨老爸寫書騙人
所以去唸了一個真正的醫學PHD
那當初幹麻還爭取該書的委任授權
自己露了餡

錢能使父子反目, 兄弟相殘一點都沒錯啊
看來真的醫學PHD也沒比假的高尚到哪裡去

wushihchang wrote:
看來真的醫學PHD也沒比假的高尚到哪裡去


PhD是代表的是學術地位,跟道德沒關係吧

我現在都跟我媽說那個醫學博士的學費比我唸碩士的一個學分還要便宜
要聽他的不如聽我的
節錄壹周刊報導:吳經國今年三十五歲,是吳永志的長子,下頭還有個弟弟。父母從越南到美國發展時,吳經國被留在台灣和親戚住,小學畢業才被接到美國,一路讀到柏克萊大學「生物物理學」博士,

好像沒有提到他是「醫學博士」也.

搜尋"Michael Wu berkeley",
就找到了http://biophysics.berkeley.edu/students.php?ID=35
這是柏克萊Berkeley實驗室的網頁(這很難造假吧!不過,小心為上,可以寫信跟柏克萊求證)

簡單翻譯一下
2001入學 2008年畢業於Jack Gallant的實驗室
主修(或專長):數學.物理.生物學

這應該是為什麼他堅持要校稿吧!因為他是「生物物理學」的Ph.D.
不讓他買了四個野雞大學博士學位的老爸亂寫吧!!!
(真的有人相信亞當夏娃的血型是A型???)

Michael Wu
Class of 2001
Graduated in 2008
E-mail:
Undergraduate Institution: University of California, Berkeley
Major: Applied Math, Physics and Molecular & Cell Biology
Origin: Redwood City, CA
Lab: Jack Gallant
Location:

Research
Nonlinear Spatiotemporal Receptive Field (STRF) Estimation by Neural Computational and Machine Learning Methods


My research will focus on the computational analysis and modeling of neurophysiological data collected from experiments that are designed to unravel the visual processing in the cortex. If one treats a neuron as a computing unit that transforms input (stimuli) into action potentials, then its transfer function, or spatiotemporal receptive field (STRF), can be estimated using mathematical techniques. The kernel might reveal the computations mediating extraction of visual features to which the cell is tuned. More sophisticated nonlinear kernel estimation methods could enable us to understand processing in extra-striate visual areas, such as V2 and V4.


I will use techniques in statistics (principal component analysis, independent component analysis and data manifold modeling), engineering (linear systems analysis and neural networks), and machine learning (support vector machine and boosting) to analyze the physiological data in order to model the complex processing of the visual system. By using natural scene stimuli and simulated saccades in the stimulus set, I should drive visual neurons efficiently so that sufficient data can be collected during an experiment. I will first attempt to characterize the linear properties of cortical cells using Wiener kernel analysis. To capture the nonlinear properties of neuron, I also plan to use neural network, support vector machines and other nonlinear techniques to study the visual pathways. With knowledge extraction techniques and unsupervised learning, I hope to visualize the kernel of extra-striate cells.


Ever since Hubel and Wiesel (1959), we have made much progress in understanding the function of the visual system. However, progress in fully characterizing neurons in primary visual cortex (V1) and extra-striate visual areas has been limited by the complex nonlinearities within the system. Further progress in this area will depend critically on finding an effective method to estimate the input-output relationship of nonlinear visual neurons. Applying the more sophisticated nonlinear kernel estimation methods to extra-striate cortex could lead to the understanding of higher visual functions, such as object recognition, form vision and visual attention.


Although there are no efficient algorithms for object recognition and form vision, our brain does it reliably in almost real time. Successful models of the visual cortex could lead to novel algorithms that are superior to conventional computer vision. The human brain is by no means faster than a computer, but it is definitely superior in certain tasks. Understanding the working of our brain could lead to novel computers that could perform tasks that currently can only be performed by humans.

Publications
Michael CK Wu, Stephen V David, and Jack L Gallant, "Complete Functional Characterization of Sensory Neurons by System Identification," Annual Review of Neuroscience 29, pp 477-505. (2006)
Ryan Prenger, Michael CK Wu, Stephen V David, and Jack L Gallant, "Nonlinear V1 Responses to Natural Scenes Revealed by Neural Network Analysis," Neural Networks 17, pp663-679, 2004.
其實不用管幾匹馬力, 用家中的聲寶果菜機也可以打出很新鮮的果菜汁.
在台灣大家就是迷信博士說的話, 代表我們的教育還是沒能教出能獨立思考的國民.
還是要多喝果菜枝, 但不用拼到一天大三次啦! 還真的有點誇張!!
  • 20
內文搜尋
X
評分
評分
複製連結
請輸入您要前往的頁數(1 ~ 20)
Mobile01提醒您
您目前瀏覽的是行動版網頁
是否切換到電腦版網頁呢?